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Abstract

A theory is proposed for the design of a uniform tunnel-entrance hood whose cross-sectional area Ah exceeds the

tunnel area A: A train entering the tunnel produces a low-frequency compression wave that can be subject to nonlinear

steepening in a long tunnel. An optimized hood of length ch increases the initial thickness of the compression wave front

from BR=M to ch=M; where R5ch is the nominal radius of the tunnel and M is the train Mach number. In addition,

the pressure rise should be linear across the wave front to obtain an overall minimum value of the subjectively

important pressure gradient. This is achieved in a uniform hood by distributing windows along the hood wall to vent

away high-pressure air displaced by the train. We consider the problem of determining the distribution and sizes of

these windows and the magnitude of the area ratio Ah=A to ensure that the hood behaves optimally at low-train Mach

numbers ðMo0:2Þ; when the hood can be regarded as being acoustically compact. At the projected higher Mach

numbers of advanced high-speed trains (B0:4; say) recent analysis for hoods of uniform cross-section by Howe in 2003

indicates that a hood optimized for low Mach number operations continues to produce an essentially linear pressure

rise across a compression wave of thicknessBch=M except for a low-amplitude oscillation at the very front of the wave.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The amplitude of the acoustic compression wave produced when a train enters a tunnel is given approximately by

DpB
r0U2

ð1� M2Þ
A0

A
1þ

A0

A

� �
: ð1:1Þ

Dp is the pressure rise across the wave front, r0 the mean air density, U the train speed, M ¼ U=c0 the train Mach

number (c0 ¼ speed of sound in air), and the ratio A0=A of the train cross-sectional area A0 to that A of the tunnel is

called the ‘blockage’ (Hara, 1961; Hara et al., 1968; Ozawa et al., 1976, 1991; Ozawa and Maeda, 1988a; Woods and

Pope 1976). Dp typically exceeds 2% or 3% of the atmospheric pressure when U > 250 km=h ð150 mile=hÞ:
For an unmodified tunnel portal of radius R (the radius of the equivalent semi-circular tunnel of the same cross-

sectional area), the pressure rise occurs over a wave front of thickness BR=M: The wave front is subject to nonlinear

steepening in a long, ‘smooth’ tunnel with concrete slab tracks, which leads to a large increase in the amplitude of the

micro-pressure wave radiated from the far end of the tunnel when the compression wave arrives. This wave can cause

undesirable ‘rattles’ and vibrations in buildings near the tunnel exit.

Effective mitigation of the micro-pressure wave is achieved in practice by artificially increasing the initial thickness of

the compression wave front by the addition of a ‘hood’ ahead of the tunnel entrance. This is a thin-walled extension
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usually fitted with ‘windows’ through which high-pressure air in front of the train is vented to the open-air (Ozawa et al.,

1991; Maeda et al., 1993; Iida et al., 1996). The compression wave generated by a train passing through an ideal hood of

length ch will have a wave-front thickness Bch=M; across which the pressure rises linearly (producing a uniform

pressure gradient) by the full amount given by Eq. (1.1).

The original hood designs were based on experiments performed by Ozawa et al. (1978) for chB3R and

Uo200 km=h ðMo0:16Þ: For a hood of cross-sectional area Ah > A with no windows, it was found that the

compression wave is generated in two steps: the first step is produced when the front of the train enters the hood and the

second when the train passes from the hood into the tunnel (see also Sasoh et al., 1994). The maximum pressure

gradient was reduced to about half its value in the absence of the hood when Ah=AB1:55; and could be decreased

further to about 40% of its value with no hood by opening a suitably sized window halfway along the hood and taking

Ah=AB1:4:
Much longer hoods fitted with multiple windows are required to obtain comparable reductions at the very much

higher speeds (up to M ¼ 0:4) envisaged in the future (Ozawa et al., 1991; Ozawa and Maeda, 1988b). It is perhaps

unrealistic to base the design of these hoods (i.e., the determination of hood radius and window size and spacing)

entirely on model scale tests.

The author has proposed an approximate theory (Howe, 2003) for calculating the compression wave produced in a

long hood with multiple windows when the hood radius Rh ¼ R: The theory was applicable for Mp0:4: At low Mach

numbers, the hood length ch is acoustically compact (i.e., small compared to the compression wave thickness Bch=M)

so that the motion within the hood produced by the entering train can be regarded as incompressible for the purposes of

calculation. A hood designed for optimal operation at small Mach numbers (i.e., one producing a compression wave

with a uniformly small pressure gradient across the wave front) ceases to be optimal when M exceeds about 0.2.

However, the overall changes in the waveform with increasing Mach numbers are small (Howe, 2003), so that a hood

optimized for low Mach number operation constitutes a useful candidate design that can be refined by experiment.

In this paper, we extend that part of the theory of Howe (2003) concerned with low Mach number operations to the

more practical case where Rh > R; and ignore the behaviour at higher Mach numbers. The design strategy then involves

the use of the low Mach number theory to obtain a first approximation for the optimal window size and spacing and for

the value of the ratio Rh=R: This is arguably a sensible approach, since it appears that no simple theory can

conveniently incorporate the influence on the waveform of vorticity in the jet flows from the windows, whose

contribution becomes progressively more important at higher train speeds. Further refinements that account for this

vorticity and for higher Mach numbers can then be made by ‘iterating’ from the theoretically predicted optimum by

systematic model scale experiments.

2. The compression wave at low Mach numbers

The analysis will be framed in terms of a model scale experimental configuration in which the tunnel consists of a

circular cylindrical, rigid-walled tube of radius R and cross-sectional area A ¼ pR2 fitted axisymmetrically with a

cylindrical hood of length ch: The hood has radius Rh > R; and there are N windows distributed along a sidewall

parallel to the hood axis (Fig. 1). Take coordinate axes x ¼ ðx; y; zÞ with the origin O in the entrance plane of the hood,

with the x-axis coaxial with the cylinder and directed out of the tunnel. Let the centroid of the nth window be at

x ¼ xn; y ¼ 0; z ¼ Rh ð1pnpNÞ; � choxNoxN�1o?ox1o0: The window at xn may be regarded as curvilinear

rectangular with length cx � cxðxnÞ parallel to the cylinder axis and azimuthal length cy � cyðxnÞ:
An axisymmetric model train of maximum radius h is projected into the tunnel from x > 0 at uniform speed U ;

travelling along a tightly stretched steel wire that extends along the tunnel axis and passes through a smooth cylindrical

hole along the train axis. For the purpose of calculation, the tunnel can be assumed to extend to x ¼ �N; and the train

regarded as semi-infinite, with uniform circular cross-sectional area A0 ¼ ph2 to the rear of the nose of length L (see

figure).

In the case of an optimally designed hood, the initial pressure rise across the front of the compression wave occurs

over a distance Bch=M that greatly exceeds the hood length ch when M is small. The hood is then said to be compact,

and the distribution of pressure pðx; tÞ within the wave front, in the tunnel ðxo� chÞ ahead of the train, can be

represented approximately by (Howe et al., 2000)

pðx; tÞE
r0U2

ð1� M2ÞA
1þ

A0

A

� �Z
N

�N

@AT

@x0 ðx0 þ U ½t	Þ
@jn

@x0 ðx
0; 0; 0Þ dx0; ð2:1Þ

provided the contributions from the low Mach number vortex sources in the exit flows from the windows are ignored.

In this formula, ½t	 ¼ t þ ðx � c0hÞ=c0 is the effective retarded time, where c0h is the portal ‘end correction’ (Howe, 1998a;
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Lord Rayleigh, 1926) and AT ðsÞ is the cross-sectional area of the train at distance s from the front of the nose of the

train. The latter is assumed to cross the entrance plane of the hood ðx ¼ 0Þ at time t ¼ 0: The integrand vanishes except

in the neighbourhood of the retarded position of the nose region of length L; where the cross-sectional area of the train

varies.

The function jnðxÞ originates from the formula for the compact acoustic Green’s function that governs the

production of sound by a point source in the vicinity of the hood (see Howe (1998a) for a general discussion). It is a

solution of Laplace’s equation that has the simple physical interpretation as the velocity potential of incompressible

flow out of the tunnel portal (the irrotational flow streaming from the windows and the mouth of the hood), and is

normalized such that

@jn

@x
B1 as x-�N within the tunnel;

jnB�
A

4pjxj
as jxj-N outside the portal: ð2:2Þ

It is assumed that the circulation
H

C
rjn � dx ¼ 0; where C is any closed contour (such as one threading two or more

hood windows). The function jnðxÞ accordingly is determined entirely by the geometry of the tunnel portal and hood,

and the integrand in Eq. (2.1) expresses the compression wave in terms of an interaction between a moving body of

variable shape (which is otherwise equivalent to distributions of monopole and dipole sources on the surface of the

train) and the variable geometry of the hood.

Solution (2.1) is derived from a slender body approximation to the distribution of monopoles and dipoles that

represent the train, in which these sources are replaced by a line source distributed along the train axis within the

interval of length L where the train cross-section varies. Previous studies (Howe, 1998b; Howe, et al., 2000) indicate that

it is valid for A0=Ao0:2; and also for Mp0:4 provided the portal remains compact at the larger Mach numbers.

The compression wave is formed by the successive interactions of the train nose with the hood portal,

with the windows, and finally with the junction between the hood and tunnel where there is a discontinuous change

from Rh to R in the cylinder radius. It is convenient to isolate these interactions by using Eq. (2.1) to calculate @p=@t

instead of p: The partial derivative @p=@t is conventionally referred to as the pressure gradient; it is small except in the

vicinity of the compression wave front. Thus (after differentiation under the integral sign and integration by parts), we

find

@p

@t
E

�r0U3

ð1� M2ÞA
1þ

A0

A

� �Z
N

�N

@AT

@x0 ðx0 þ U ½t	Þ
@2jn

@x02 ðx0; 0; 0Þ dx0; x5� ch: ð2:3Þ
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Fig. 1. (a) Circular cylindrical tunnel of radius R fitted with a hood of length ch and radius Rh with N ¼ 4 rectangular windows. The

geometric centre of the nth window is at x ¼ xn; y ¼ 0; z ¼ Rh: (b) Axisymmetric train entering the hood at speed U along the centre-

line of the tunnel.
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This formula shows that substantial changes in the pressure gradient will be observed for those retarded positions of the

train nose where @2jn=@x02 is large, namely within the hood where there are significant ‘discontinuities’ in hood

geometry (at the portal, near windows, at the contraction in area). When @p=@t has been evaluated the pressure p is

computed from

p ¼
Z t

�N

@p

@t0
dt0: ð2:4Þ

3. Approximate representation of unðxÞ

The function jn satisfies Laplace’s equation

r2jn ¼ 0; ð3:1Þ

subject to conditions (2.2). Eq. (3.1) must normally be solved numerically because of the presence of the windows, but

here we shall apply an approximate procedure in which the behaviour of @2jn=@x2 along the track of the train is

determined in two stages I and II. In the first stage, the windows are replaced by a continuous sink distributed along the

hood and a solution is derived for an approximation jn
I ðxÞ within the hood which satisfies an averaged form of

Eq. (3.1). This solution therefore depends only on the axial position x within the hood, and can subsequently be used to

determine the ‘source strength’ of the individual windows. Indeed, when the size and shape of the nth window are

specified the volume flux qn through the window directed out of the hood is given approximately by Rayleigh’s formula

(Howe, 1998a; Rayleigh, 1926)

qn ¼ �Knjn

I ðxnÞ; ð3:2Þ

where Kn is the conductivity of the window, and the analytic extension of jnðxÞ in the free space region outside the hood

is assumed to be negligible (so that the effective potential difference across the nth window is �jn
I ðxnÞ). When qn has

been found for each window, a second approximation that yields @2jn=@x2 for use in Eq. (2.3) can then be obtained by

introducing exact representations in the hood for the potential fields of the window sources.

3.1. Stage I

The one-dimensional, averaged equation satisfied by jn
I is

@2jn
I

@x2
¼ �Q; ð3:3Þ

within the hood in the interval xNoxo0 occupied by the windows (the region labelled H in Fig. 2). The continuum

approximation Q to the window source strength must be taken to be constant for an optimized hood, in which case

Eq. (2.3) will yield a pressure gradient that is also approximately constant and a pressure that grows linearly across the

compression wave front (see also Howe, 1999). Therefore,

jn

I ¼ �
Qx2

2
þ ax þ b; xNoxo0; ð3:4Þ

where a; b are constants, and this expression must match at xBxN � 0 the velocity potential describing incompressible

flow through the junction (J in Fig. 2) of the tunnel and hood. Let the latter potential be specified by

jn ¼ jn

J ðxÞ þ g; ð3:5Þ
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Fig. 2. The regions T, J, H, E, and A of the tunnel and hood used to define the Stage I approximation of jn: The coordinate origin is at

the hood entrance plane.
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where g is another constant, and where the functional form of jn
J ðxÞ is fixed by the conditions (consistent with the

behaviour defined by Eq. (2.2))

jn

JB
x þ ch � cJ as x þ ch-�N;

A

Ah

ðx þ chÞ as x þ ch-N;

8<
: ð3:6Þ

where the limiting values are attained at distances BOðRh � RÞ from the junction, and cJ5R is the effective ‘length’ of

the junction (see Howe et al., 2003). The variation of jn
J ðxÞ can be found in a routine manner using, for example, a finite

difference approximation to the equations for potential flow through a discontinuous change in cross-section in a

circular duct infinite in both directions.

Thus, equating the respective values of jn and @jn=@x given by Eqs. (3.4) and (3.5) at x ¼ xN ; we have

�
Qx2

N

2
þ axN þ b ¼

A

Ah

ðxN þ chÞ þ g;

� QxN þ a ¼
A

Ah

: ð3:7Þ

As x-0 (at E in Fig. 2, between the first window at x ¼ x1 and the entrance plane of the hood) we shall require jn
I to

resemble the velocity potential of uniform incompressible flow from a circular cylindrical duct of radius Rh: Then
(Howe, 1998a; Rayleigh, 1926)

jn

I ¼ �Vc0;
@jn

I

@x
¼ V ; as x-� 0; ð3:8Þ

where c0E0:61Rh is the ‘end correction’ of an unflanged duct of radius Rh; and V is the mean flow speed @jn
I =@x at the

portal. These conditions yield

a ¼ V and b ¼ �Vc0; ð3:9Þ

so that in terms of V ; Eqs. (3.7) and (3.9) imply that

Q ¼ �
1

xN

A

Ah

� V

� �
;

g ¼
xN

2

A

Ah

� V

� �
þ V ðxN � c0Þ �

A

Ah

ðxN þ chÞ: ð3:10Þ

These results supply the following representations of the averaged, stage I, approximation to the velocity potential

jn ¼

jn
J ðxÞ þ

xN

2

A

Ah

� V

� �
þ V ðxN � c0Þ �

A

Ah

ðxN þ chÞ at T and J;

jn
I ðxÞ �

x2

2xN

A

Ah

� V

� �
þ V ðx � c0Þ in the hood H;

Vjn
EðxÞ at E and A;

8>>>>><
>>>>>:

ð3:11Þ

where T, J, H, E and A are the tunnel, hood and exterior regions shown in Fig. 2. The value of the coefficient V is

arbitrary at this stage, and must be determined to optimize the behaviour of the hood (see Section 4.2). The potential

function jn
EðxÞ is known in analytic form for an unflanged circular duct (Eqs. (3.16) below) and may be interpreted as

the velocity potential of the axisymmetric, incompressible flow from the hood portal that satisfies

@jn
E

@x
B1 for x5� Rh within the hood;

jn

EB�
Ah

4pjxj
for jxjbRh outside the portal at A: ð3:12Þ

As x-�N in the tunnel, jn-x � c0h; where the first line of Eq. (3.11) yields the end correction in the form

c0hE� ch þ c0J þ
A

Ah

ch þ
xN

2

	 

þ V c0 �

xN

2

	 

: ð3:13Þ

3.2. Stage II

Approximation (3.11) is next refined by replacing the smoothed, collective contribution of the windows within the

hood (represented by the second line of Eq. (3.11)) by terms representing the separate contributions of each window.
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Let qn denote the volume flux, defined as in Eq. (3.2), from the nth window (with centroid x ¼ xn; 1pnpN). It is

equal to the net change in the axial volume flux within the hood between x ¼ xn and x ¼ xn�1; so that

qn ¼ Ah

@jn
I

@x
ðxnÞ �

@jn
I

@x
ðxn�1Þ

� �
¼ Ah

A

Ah

� V

� �
ðxn � xn�1Þ

xN

; n ¼ 1; 2;y;N; ð3:14Þ

where x0 ¼ 0 (as in Fig. 1).

This result can now be used to evaluate the influence of the windows on the pressure gradient @p=@t of Eq. (2.3). In

the continuum approximation of stage I, Eq. (3.11) implies that @2jn=@x2 is constant within the hood, whereas it

actually is approximately zero in those sections of the hood between neighbouring windows. To account for this

behaviour, the averaged variation of jn within the hood (represented by jn
I ðxÞ) is replaced by the sum of the separate

contributions from windows, the contribution from the nth window being set equal to the velocity potential of the

incompressible flow produced by a point sink of strength qn at the centroid ðxn; 0;RhÞ of the window in an infinite duct of

radius Rh; which we write in the form

qn

Ah

jn

nðxÞ:

In terms of cylindrical polar coordinates ðr; y; xÞ; where ðz; yÞ ¼ rðcos y; sin yÞ; it can be shown by routine calculation

(Howe, 2003; Noble, 1958) that

@2jn
n

@x2
ðr; y; xÞ ¼ �

1

pRh

XN
m¼0

Z
N

0

sml cosðmyÞ
Imþ1ðlÞ þ Im�1ðlÞ

Im

lr

Rh

� �
cos

lðx � xnÞ
Rh

� �
dl; roRh; ð3:15Þ

where In is a modified Bessel function (Abramowitz and Stegun, 1970), and s0 ¼ 1; sm ¼ 2 ðmX1Þ:
A similar integral representation is available (Howe, 1999) for the second derivative @2jn

EðxÞ=@x2 of the velocity

potential representing potential flow from the hood portal, namely

@2jn
E

@x2
ðr; y; xÞ ¼ �

1

2pRh

Z
N

0

lI0
lr

Rh

� �
2K1ðlÞ
I1ðlÞ

� �1=2

cos l
x

Rh

þZðlÞ
� �� �

dl; roRh;

ZðlÞ ¼
1

p

Z
N

0

ln
K1ðmÞI1ðmÞ
K1ðlÞI1ðlÞ

� �
dm

m2 � l2
ð3:16Þ

where K1 is a modified Bessel function (Abramowitz and Stegun, 1970). The remaining potential function jn
J ðxÞ in

Eq. (3.11) must be found by numerical integration of Laplace’s equation, as discussed above.

Taking account of these definitions, the stage II approximation yields the following representation of the second

derivative @2j=@x2 for use in Eq. (2.3):

@2jn

@x2
ðxÞ ¼

@2jn
J

@x2
ðxÞ þ

A

Ah

� V

� �XN

n¼1

ðxn � xn�1Þ
xN

@2jn
n

@x2
ðr; y; xÞ þ V

@2jn
E

@x2
ðr; y; xÞ: ð3:17Þ

The terms on the right-hand side are, respectively, nonzero near the junction of the hood and tunnel, near the nth

window ð1pnpNÞ; and at the hood portal: jn
J ðxÞ depends only on the area ratio A=Ah; the contributions from the

windows depend on V ; A=Ah and window distribution xn; the value of V remains to be specified.

3.3. Window dimensions

Rayleigh’s formula (3.2) is used to estimate the size of the nth window. It will be assumed that the area An of the nth

window is small compared to the cross-sectionAh of the hood, and that the hood wall has thickness cw: Then according

to Rayleigh (1926), the conductivity Kn satisfies

1

Kn

E
ffiffiffiffiffiffiffiffiffiffi
p

4An

r
þ

cw

An

: ð3:18Þ

Therefore,

AnE
pK2

n

16
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

16cw

pKn

s !2

; ð3:19Þ

ARTICLE IN PRESS
M.S. Howe / Journal of Fluids and Structures 17 (2003) 1111–11211116



where (using the second line of Eq. (3.11) and Eq. (3.14) in Eq. (3.2))

Kn ¼
Ahðxn�1 � xnÞ

x2
n=2þ VxN ðxn � c0Þ=ððA=AhÞ � V Þ

: ð3:20Þ

4. Evenly spaced windows

4.1. Formulae

Suppose the hood has N evenly spaced windows with neighbouring centroids distance ch=ðN þ 1Þ apart, such that

xn ¼
�nch

N þ 1
; 1pnpN: ð4:1Þ

Then ch=ðN þ 1Þ is also the distance of the innermost window at x ¼ xN from the junction with the tunnel. Eqs. (3.14)

and (3.20) imply that the corresponding window source strengths and conductivities are, respectively,

qn ¼
Ah

N

A

Ah

� V

� �
; 1pnpN; ð4:2Þ

and

Kn ¼
2ðN þ 1ÞAh

n2ch þ 2NV ðnch þ ðN þ 1Þc0Þ=ððA=AhÞ � V Þ
; 1pnpN : ð4:3Þ

Similarly, Eq. (3.17) reduces to

@2jn

@x2
ðxÞ ¼

@2jn
J

@x2
ðxÞ þ

1

N

A

Ah

� V

� �XN

n¼1

@2jn
n

@x2
ðr; y; xÞ þ V

@2jn
E

@x2
ðr; y; xÞ: ð4:4Þ

4.2. Parameter values for an optimized hood

As x increases from �ch to 0 within an optimally designed hood @jn=@x is required to decrease linearly from 1 to V

(Howe, 1999; Howe et al., 2000). This is not possible in a hood with a discrete (as opposed to a continuum) distribution

of windows. For evenly spaced windows, however, it can be closely approximated by choosing V so that the mean value

of Rh@2jn=@x2 is approximately constant within the hood.

For each n and fixed values of r and y; it follows from Eq. (3.15) that �Rh@2jn
n=@x2 is an even function of x � xn; with

a single positive maximum at x ¼ xn: This maximum value is approximately equal to 0:89 on the axis of symmetry.

Thus, for evenly spaced windows the contribution from the series of N ‘window’ terms on the right of Eq. (4.4) defines a

function of x that varies periodically from window to window within the hood, assuming equal negative maxima equal

to

�
0:89

NRh

A

Ah

� V

� �

on the hood axis.

The final term V@2jn
E=@x2 on the right of Eq. (4.4) is also negative and nonzero only near x ¼ 0; where it attains a

negative maximum value of �0:64V=Rh on the axis of symmetry. Therefore, the average negative value of @2jn=@x2 can

be expected to be approximately constant within the hood and at the hood portal provided �0:64V=Rh ¼
�ð0:89=NRhÞðA=Ah � V Þ; i.e., when

V ¼
A=Ah

1þ 0:72N
: ð4:5Þ

Similarly, the second derivative of the potential function jn
J ðxÞ (of flow through the junction from x ¼ �N) is also

negative, with a negative maximum near x ¼ �ch: Calculated values of this negative maximum on the x-axis of

symmetry are displayed in Fig. 3 (black circles) for several values of Rh=R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ah=A

p
: This variation is well described

by the formula

�Rh
@2jn

J

@x2

� �
max

E
0:6ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=Ah

p ð1� ðA=AhÞ
ffiffiffiffiffiffiffi
2p=3

p
Þ; ð4:6Þ
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which is plotted as the solid curve in Fig. 3. When the number of windows N is prescribed ð�Rh@2jn
J=@x2Þmax will be

equal to the uniform maximum value at each of the windows and at the hood portal provided the area ratio A=Ah is

chosen to satisfy

0:64A=Ah

1þ 0:72N
¼

0:6ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=Ah

p ð1� ðA=AhÞ
ffiffiffiffiffiffiffi
2p=3

p
Þ: ð4:7Þ

The values of Ah=A and Rh=R that satisfy this equation for 0pNp10 are listed in Table 1.

It is noteworthy that the values in this table of Ah=A for N ¼ 0 and 1 are very close to those (1.55 and 1.4,

respectively) found experimentally by Ozawa et al. (1978).

The results are illustrated further in Fig. 4 for a hood of length ch ¼ 10R with N ¼ 3 windows, which shows the

optimal behaviour of R@2jn=@x2 calculated from Eq. (4.4) on the axis of the hood (Fig. 4b) and the corresponding

wavy, but essentially linear variation of @jnðxÞ=@x (Fig. 4a, evaluated by integrating Eq. (4.4) from x > 0 where

@jn=@x-0). According to Table 1 and Eq. (4.5) the hood is optimal for

Rh

R
E1:1 and VE0:26:

The five negative maxima of R@2jn=@x2 on the hood axis are seen to be of equal magnitude at roughly evenly spaced

intervals. Those labelled J and E in the figure are the negative maxima produced, respectively, by the junction and hood

portal potentials jn
J and jn

E ; the remainder are produced by the three windows.

Eqs. (3.19) and (4.3) can be used to calculate the corresponding window dimensions. In a typical experimental

arrangement the wall thickness cwB0:15R: If the windows are square, the nth one having side cn; we then find

c1
R

¼ 0:74;
c2
R

¼ 0:38;
c3
R

¼ 0:25:

4.3. Train with ellipsoidal nose profile

The application of these results will be illustrated for the case of a train with an ellipsoidal nose profile defined by

r ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=LÞð2� x=LÞ

p
; 0oxoL ðr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
Þ: If s denotes distance measured from the front of the train (ignoring
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Fig. 3. Dependence of �Rh
@2jn

J ðx; 0; 0Þ
@x2

� �
max

on Rh=R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ah=A

p
:   ; numerical computation;—, Eq. (4.6).

Table 1

Values of Ah=A and Rh=R for N evenly spaced windows

N 0 1 2 3 4 5 6 7 8 9 10

Ah=A 1.636 1.389 1.281 1.220 1.181 1.154 1.134 1.118 1.106 1.096 1.088

Rh=R 1.279 1.179 1.132 1.105 1.087 1.074 1.065 1.057 1.052 1.047 1.043
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the rear end of the train),

AT ðsÞ
A0

¼
ðs=LÞ 2� s=L

� �
; 0osoL;

1; s > L;

(
ð4:8Þ

ARTICLE IN PRESS

Fig. 4. Variation of (a) @jnðxÞ=@x and (b) R@2jnðxÞ=@x2 on the hood axis ðr ¼ 0Þ for an optimized hood of length ch ¼ 10R with N ¼ 3

windows (so that V ¼ 0:26 and Rh=RE1:1).

Fig. 5. The normalized compression wave pressure and pressure gradient produced by a train

p
r0U2

ð1� M2Þ
A0

A
1þ

A0

A

� �
;

@p

@t

� �
r0U3

Rð1� M2Þ
A0

A
1þ

A0

A

� �
with the ellipsoidal nose (4.8) satisfying Eq. (4.9) entering an optimized hood of length ch ¼ 10R with N ¼ 3 evenly spaced windows.
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This formula and Eq. (4.4) have been used in Eq. (2.3) to calculate the compression wave pressure gradient @p=@t for the

optimized hood of length ch ¼ 10R; with three windows discussed above. The compression wave pressure profile is then

evaluated from Eq. (2.4).

Numerical results are shown in Fig. 5 for

A0

A
¼ 0:2;

h

L
¼

1

3
: ð4:9Þ

The calculated variations of

p
r0U2

ð1� M2Þ
A0

A
1þ

A0

A

� �
;

@p

@t

� �
r0U3

Rð1� M2Þ
A0

A
1þ

A0

A

� �
ð4:10Þ

are plotted as functions of U ½t	=R ð½t	 ¼ t þ ðx � c0hÞ=c0; where from Eq. (3.13) c0hE� 3:7R). The pressure gradient

exhibits five equal maxima: that near U ½t	=R ¼ 0 is the contribution from @2jn
E=@x2 produced as the nose enters the

hood; that near U ½t	=R ¼ 10 is produced as the nose passes from the hood into the tunnel; and the three intermediate

maxima are produced as the nose passes the three windows. These maxima are responsible for the ‘rippling’ of the

pressure profile p; which otherwise rises smoothly over �1oU ½t	=Ro11; so that the overall compression wave thickness

B12R=M which greatly exceeds ch when M is small.

Of course, a very much smoother pressure profile and much reduced pressure gradient maxima can be achieved by

increasing the number of windows subject to conditions (4.5) and those given in Table 1.

5. Conclusion

The large-scale, low-frequency compression wave produced when a train enters a tunnel is equivalent to that

generated by a combination of constant strength monopole and dipole sources translating into the tunnel at constant

velocity. These sources are distributed over the nose region where the cross-sectional area of the train is variable. The

compression wave is the result of the interactions of these sources with the tunnel portal. The shape of the wave-front

pressure profile, and its thickness, depend critically on portal geometry, and can be modified by installation of a tunnel-

entrance hood of suitable variable geometry. The overall wave-front thickness Bch=M; but the wave-front profile is

determined by the details of the hood geometry.

To achieve effective suppression of the micro-pressure wave pulse it is usually necessary to adjust the hood to produce

an initial profile that has a linear rise in pressure across the wave front. For example, when ch ¼ 10R this can be done by

using a flared hood whose cross-sectional area decreases smoothly from AEE5:3A at the hood entrance plane, to the

tunnel area A at x ¼ �ch according to the formula (Howe, 1999)

AhðxÞ
A

¼ 1
A

AE

�
x

ch

1�
A

AE

� �� ��
; �choxo0: ð5:1Þ

However, this ideal hood geometry requires the hood radius Rh at the entrance to be about 2:3R; which is probably too

large to be easily realizable at full scale.

A smoothly flared hood can be approximated by a sequence of step-like increases in cross-sectional area. The

compression wave is then formed progressively by the successive interactions of the train nose with the steps. The

dynamical effect of the step increases in cross-section is roughly equivalent to that produced in a hood of constant cross-

section when the steps are replaced by suitably sized windows. This means that a combination of hood area changes and

windows can be used to simulate the ideally flared geometry of Eq. (5.1). The results given in Section 4 of this paper

show how this can be done for moderate train Mach numbers in the important case where the hood area Ah > A is

constant. In the special case of N ¼ 1 window, or when there are no windows, our predictions of the respective

optimum values of Ah=A agree with those determined experimentally by Ozawa et al. (1978). For hoods with multiple

windows, the dimensions predicted by our analysis of some of the ‘inner’ windows may be too small in practice, because

of our implicit neglect of ‘vortex’ compression wave sources within the jet flows from the windows of air displaced by

the moving train (cf. Howe et al., 2000). Preliminary calculations performed by the author for a long hood with a single

window indicate that the neglect of vorticity production in the window produces a temporary drop in pressure just to

the rear of the compression wave front, contrary to observation; the pressure subsequently rises to a value consistent

with experiment. According to the present theory, however, such pressure drops do not occur for an optimized hood

with multiple windows. Thus, it is likely that the principal defect of the irrotational approximation of this paper is that

the neglect of vorticity production (which might effectively impede flow from the inner, smaller windows) will lead to a

prediction of the compression wave front that is marginally thicker than that realized in practice. It will therefore be
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necessary to fine-tune these predictions by using data from model-scale experiments to adjust the dimensions of the

smaller windows.

At higher Mach numbers (> 0:2; say) the assumption of hood ‘compactness’ becomes questionable, and phase

differences between the interactions of the train nose with windows at opposite ends of the hood become progressively

more important. However, a detailed analysis of the effect of noncompactness for a hood of constant cross-sectional

area (Howe, 2003) indicates that when M is as large as 0.4, a hood that has been optimized for low Mach number

operations continues to produce an essentially linear pressure rise across compression wave of thickness Bch=M except

for a low-amplitude oscillation at the very front of the wave.
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